TYPES OF METEORITE

Achondrite

- Features: Ablation crust, 99% Rocky
- Likely origin: Crust of an asteroid

Chondrite

- Features: Ablation crust, Chondrules, Rocky
- Likely origin: Asteroid
Iron meteorite

Features
- Ablation crust
- Magnetic
- 99% Iron

Likely origin
- Core of older and larger asteroids

Pallasite

Features
- Ablation crust
- Magnetic
- 99% Iron
- Olivine crystals
- 50% Rocky, 50% Iron

Likely origin
- Core/mantle boundary of asteroids
TYPES OF METEORITE

<table>
<thead>
<tr>
<th>Type</th>
<th>Percent rocky</th>
<th>Percent iron metal</th>
<th>Characteristics and formation</th>
</tr>
</thead>
</table>
| Chondrites | 80 | 20 | • Contain chondrules
 • After coming together (accretion), chondrites have never melted again, which makes them some of the oldest objects in the solar system. |
| Carbonaceous Chondrites | 80 | 20 | • Chondrites that contain traces of organic molecules.
 • These may be catalysts for life on Earth and other planets |
| Achondrites | >99 | <1 | • Igneous rocks that formed from the lavas that compose the crust of asteroids, or as material remaining inside asteroids to form their mantles
 • These look a lot more like earth rocks, such as granite or basalt |
| Iron Meteorites | <1 | >99 | • Most are from solidified cores of asteroids that have melted, similar to the core of Earth |
| Pallasites | 50 | 50 | • Mostly the crystals of the mineral olivine surrounded by metallic iron-nickel,
 • Formed at the boundary between an asteroid core and mantle
 • Olivine crystals are also found at the core-mantle boundary of Earth |